Synthesis of (1-Halo-1-alkenyl)trimethylsilanes via gem-Trimethylsilylation of Vinyl Halides

Nobujiro Shimizu,* Fumihiro Shibata, and Yuho Tsuno Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812 (Received July 17, 1986)

Synopsis. Various vinyl halides including enol silyl ethers of α -halo ketones and esters give the corresponding (1-halo-1-alkenyl)trimethylsilanes in fair to good yields on treatment with lithium diisopropylamide at Dry Ice temperature in the presence of chlorotrimethylsilane.

(1-Bromovinyl)trimethylsilane and its homolog are versatile synthetic reagents¹⁾ and obtainable from 1alkenyl-or 1-alkynyltrimethylsilanes.^{2,3)} An alternative simple route to (1-halo-1-alkenyl)trimethylsilanes may be provided by gem-silvlation of vinyl halides which are readily available. Cunico and Han have reported that the treatment of 1-chloro-2-methylpropene with butyllithium below -100 °C, followed by addition of chlorotrimethylsilane (TMS-Cl), gives (1-chloro-2-methyl-1-propenyl)trimethylsilane in 39% yield.⁴⁾ The scope of this method, however, would be limited due to the anticipated side reactions including a facile rearrangement of gem-haloalkenyllithium species to acetylenic compounds, a metal-halogen exchange reaction, and a coupling reaction between butyllithium and TMS-Cl. For example, we found that under similar metalation conditions to those reported⁴⁾ vinyl bromide gave bis(trimethylsilyl)acetylene, while β -bromostyrene afforded β -(trimethylsilyl)styrene as the major product. This paper deals with the gem-trimethylsilylation of various vinyl halides la-j by a modified procedure using lithium diisopropylamide (LDA) in place of butyllithium.

Since LDA is inactive toward TMS-Cl below Dry Ice temperature, the metalation of a vinyl halide can be done in the presence of a trapping agent TMS-Cl. Thus, when a vinyl halide 1 was added to an equimolar mixture of LDA and TMS-Cl in THF/ether (2:1) at -75 °C or below, there was obtained the corresponding (1-halo-1-alkenyl)trimethylsilane 2 in fair to good yields. The results are shown in Table 1.

R-C≡C-SiMe ₃	$egin{array}{c} \operatorname{Cl} & \operatorname{R} & \operatorname{H} \\ \operatorname{Me}_3\operatorname{Si-C=C-C-SiMe}_3 \end{array}$
$3a; R=SiMe_3$	Cl
3b; R=Ph	4a; R=H
	4b ; $R = OSiMe_3$

Table 1. gem-Trimethylsilylation of Vinyl Halides

Halide	Conditions ^{a)}	Products (Yield/%)b)
la	A	$2a (60) + 3a (7)^{c}$
1b	В	2b (54)
lc	В	$2c (55) + 3b (30)^{c}$
$\mathbf{1d}^{\mathbf{d})}$	A	2d (23) ^{a)}
$\mathbf{1e}^{\mathbf{d})}$	В	$2e (11)^d + 4a (58)^d$
$\mathbf{le}^{d)}$	$\mathbf{B}^{\mathbf{e})}$	$2e (59)^d + 4a (5)^c$
1e ^{d)} 1e ^{d)} 1e ^{d)}	$\mathbf{B^{f)}}$	4a $(80)^{(d)}$
lf ^{g)}	С	2f (84) ^{g)}
7a	$C_{\mathfrak{v}}$	2f $(67)^{h}$
$\mathbf{lg}^{\mathrm{i)}}$	C C _u	$2g(80)^{i}$
7 b	$\tilde{\mathbf{C}}_{\mathbf{p}}$	2g (40) ¹⁾
1h	\mathbf{C}	4b $(74)^{(k)}$
li ^{d)}	C _t ,	$2i (70)^{d}$
7c	$C_{t)}$	8a (45)
7b	C_{t}	8b $(45)^{1}$

a) The silylation was carried out by adding a halide 1 to an equimolar mixture of LDA and TMS-Cl (1—1.2 equiv.) under following conditions: (A) at -100°C in THF/ether (2:1) for 3 h, (B) at -75°C in THF/ether (2:1) for 2 h, (C) at -75°C in THF for 4 h. b) Isolated yield. c) Determined by GLC. d) A mixture of stereoisomers. e) A LDA solution was added to a mixture of 1 and TMS-Cl. f) An excess amount of a LDA/TMS-Cl mixture was used. g) E/Z < 0.05. h) E/Z = 0.67. i) E/Z = 0.15. j) E/Z = 20. k) Corrected for the recovery of 1 h (49%). l) NMR analysis of a crude product before acidic workup indicated the formation of 2j (E/Z = 1) in 58% yield.

The addition of 1,3-dichloropropene le to a LDA/TMS-Cl mixture led to the predominant formation of a doubly silylated product 4a. Monosilylation at the vinylic site, however, could be effected by inverse addition of a LDA solution to a mixture of le and TMS-Cl. This procedure provides a convenient route to a versatile compound 2e⁵⁾ which otherwise is not readily accessible. 2e underwent a direct displacement reac-

tion with Ph_2CuLi yielding [1-chloro-3-phenyl-1-propenyl)trimethylsilane (5, 73%), whereas it reacted with n-BuMgBr in the presence of a catalytic amount of cupper (I) iodide to give (1-butyl-1-heptenyl)trimethylsilane (6) in 78% yield via a double rearrangement of the allylic double bond.

gem-Silylation was readily accomplished also for vinyl halides bearing an enol ether function. For example, enol silyl ethers (1f and 1g) of α -halo ketones 7a and 7b stereoselectively gave 2f and 2g in good yields. The use of 2 equiv amounts of a LDA/TMS-Cl

mixture converted these halo ketones directly to **2f** and **2g**, although the concomitant occurrence of the reduction of the carbonyl group with LDA lowered the yield of **2**, especially so in the case of **7b**. Synthesis of α -trimethylsilyl esters **8a** and **8b** was conveniently accomplished by the treatment of halo esters **7c** and **7d** with excess amounts of a LDA/TMS-Cl mixture followed by acidic workup.

$$\begin{array}{cccc} O & & & O \\ R-C-CH_2X & & X-CH-C-OMe \\ \textbf{7a}; \ R=Me, \ X=Cl & & SiMe_3 \\ \textbf{7b}; \ R=Ph, \ X=Br & \textbf{8a}; \ X=Cl \\ \textbf{7c}; \ R=OMe, \ X=Br & \textbf{8b}; \ X=Br \\ \textbf{7d}; \ R=OMe, \ X=Br & \end{array}$$

Experimental

NMR spectra were recorded on a Hitachi R-20B spectrometer using carbon tetrachloride as solvent. The following examples are representative.

(1-Bromo-2-methyl-1-propenyl)trimethylsilane (2b). A LDA solution prepared from n-BuLi (in hexane, 22 mmol) and diisopropylamine (22 mmol) in THF/ether (2:1, 30 cm³) was cooled to -75 °C and TMS-Cl (22 mmol) was added. To this mixture was added 1-bromo-2-methyl-1-propene (2.3 g) in THF (5 cm³) over a period of 20 min and the resulting mixture was stirred for 2h at -75 °C. A crude oil obtained after workup was distilled to give 2b (1.9 g): Bp 124—125 °C (140 Torr: 1 Torr=133.3 Pa); IR 1615 cm $^{-1}$; 1 H NMR δ =0.26 (9H, s), 1.89 (3H, s), 1.97 (3H, s). Found: C, 40.62; H, 7.35%. Calcd for $C_7H_{15}BrSi$: C, 40.58; H, 7.30%.

(1,3-Dichloro-1-propenyl)trimethylsilane (2e). An ethereal solution (50 cm³) of LDA (34 mmol) was added to a mixture of 1,3-dichloropropene (3.8 g) and TMS-Cl (3.8 g) in THF (50 cm³) over a period of 1 h at -75 °C and the resulting mixture was stirred for 1 h at that temperature. Usual workup gave 2e (3.4 g) as a mixture of stereoisomers (*E*/*Z*=0.48): Bp 65—68 °C (2 Torr) [lit,⁵⁾ Bp 25 °C (0.03 Torr)].

1-Chloro-2-trimethylsiloxy-1-trimethylsilylpropene (2f). To a mixture of LDA (18 mmol) and TMS-Cl (18 mmol) in THF (20 cm³) was added an enol silyl ether If (E/Z < 0.05, 2.4 g) over a period of 10 min at -75 °C and the mixture was stirred at -75 °C for 4h. A crude oil obtained after workup was distilled to give 2f (2.98 g, E/Z < 0.05): Bp 106—108 °C (29 Torr); 1R 1605 cm⁻¹; ¹H NMR δ =0.20 (18H, s), 1.86 (3H, s).

Methyl Chloro(trimethylsilyl)acetate (8a). To a cold (-75 °C) solution of LDA (44 mmol) and TMS-Cl (44 mmol) in THF (25 cm³) was added a THF solution of methyl chloroacetate (2.16 g) and the mixture was stirred at -75 °C for 4 h. Solvent was removed on a rotary evaporator and the residue was extracted with petroleum ether. The organic layer was washed first with a cold hydrochloric acid (5 M (1 M=1 mol dm⁻³), 20 cm³), then with a saturated sodium hydrogencarbonate solution, and dried. A crude oil obtained after workup was distilled to give 8a (1.63 g): Bp 78—79 °C (20 Torr); lR 1745, 1720 cm⁻¹; ¹H NMR δ=0.18 (9H, s), 3.70 (3H, s), 3.72 (lH, s). Found: C, 39.55; H, 7.28%. Calcd for $C_6H_{13}ClO_2Si: C$, 39.88; H, 7.25%.

Physical and spectral data for other new compounds listed in Table 1 are as follows.

2C: Bp 126—128 °C (16 Torr); IR 1255, 840 cm⁻¹; ¹H NMR δ =0.04 (9H, s), 7.14 (5H, m), 7.84 (1H, s).

2d: Bp 130—135 °C [as a mixture of stereoisomers in the ratio 1:3.3); IR 1610 cm⁻¹; ¹H NMR (Signals of the less

abundant isomer were shown in italics.) δ =0.16 and 0.24 (together 9H, both s), 1.76 (d, J=7 Hz) and 1.82 (d, J=7 Hz) (together 3H), 6.02 and 6.41 (together 1H, both q, J=7 Hz).

E-2f: ¹H NMR δ=0.15 (9H, s), 0.24 (9H, s), 2.03 (3H, s). 2g: Bp 98—100 °C (2 Torr); IR 1605, 1585 cm⁻¹; ¹H NMR δ=-0.09 g (9H, s), 0.06 (9H, s), 7.30 (5H, m); (Found: C, 49.25; H, 6.90%).

2i: Bp 101-103 °C (23 Torr): IR 1615, 1250, 840 cm⁻¹; 1 H NMR δ =0.13 (s), 0.23 (s), 0.28 (s) (1.7:1:1.2, together 18H), 3.49 (s) and 3.78 (s) (1.9:1, together 3H).

2j: 105 - 108 °C (7 Torr) (E/Z=1): IR 1610 cm⁻¹; 1 H NMR $\delta=0.14$ (s), 0.24 (s), 0.29 (s) (1.8:1:1, 18H altogether), 3.50 (s) and 3.72 (s) (1:1, together 3H)

4a: Bp 95—98 °C (2 Torr) (E/Z=0.56). E-isomer: IR 1580 cm⁻¹; ¹H NMR δ =0.14 (9H, s), 0.27 (9H, s), 3.89 (1H, d, J=13 Hz), 6.36 (1H, d, J=13 Hz). Z-isomer: IR 1600 cm⁻¹; ¹H NMR δ =0.12 (9H, s), 0.18 (9H, s), 4.40 (1H, d, J=10.5 Hz), 5.93 (1H, d, J=10.5 Hz); (Found (as a mixture of stereoisomers): C, 42.45; H, 7.80%).

4b: Bp 145—146 °C (35 Torr); IR 1580 cm⁻¹; ¹H NMR δ =0.12 (9H, s), 0.24 (9H, s), 3.95 (1H, s).

8b: Bp 49—50 °C (3 Torr); IR 1745, 1720 cm⁻¹; 1 H NMR δ =0.20 (9H, s), 3.54 (1H, s), 3.70 (3H, s); (Found: C, 31.71; H, 5.60%).

(1-Chloro-3-phenyl-1-propenyl)trimethylsilane (5). 2e (0.50 g) was added to a solution of lithium diphenylcuprate(I) (12 mmol) in ether (15 cm³) and the mixture was stirred for 1 h at 0 °C. Bulb-to-bulb distillation of a crude oil gave 5 450 mg, as a mixture of stereoisomers in the ratio 1:2.6: IR 1615 cm⁻¹; ¹H NMR (Signals of the less abundant isomer were shown in italics.) δ =0.18 (s) and 0.29 (s) (together 9H), 3.44 (d, J=7.8 Hz) and 3.60 (d, J=6.6 Hz) (together 2H), 6.08 (t, J=6.6 Hz) and 6.51 (t, J=7.8 Hz) (together 1H), 7.15 (5H, m); (Found: C. 64.01: H. 7.58%).

(1-Butyl-1-heptenyl)trimethylsilane (6). A solution of butylmagnesium bromide prepared from 2.74 g of butyl bromide in THF (15 cm³) was added to a mixture of 2e (930 mg, E/Z=1.5) and cupper(I) iodide (0.5 g) in THF (15 cm³) and HMPA (2 cm³) and the resulting mixture was stirred for 4 h at 0°C. A crude oil (1.25 g) obtained after workup was distilled to give 6 (880 mg, as a mixture of stereoisomers in the ratio 1:1.9): Bp 108—109°C (12 Torr); lR 1615 cm⁻¹; lH NMR (Signals of the less abundant isomer were shown in italics.) δ =0.04 (s) and 0.12 (s) (together 9H), 0.75—1.1 (6H, m), 1.1—1.7 (10H, m), 1.8—2.4 (4H, m), 5.64 (t, J=7 Hz) and 5.86 (t, J=7 Hz) (together lH); (Found: C, 74.25; H, 13.28%).

References

- 1) W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, New York (1983), Chap. 7.
- 2) A. Ottolenghi, M. Fridkin, and A. Zilkha, Can. J. Chem., 41, 2977 (1963); B. T. Gröbel and D. Seebach, Chem. Ber., 110, 867 (1977); T. H. Chan, W. Mychajlowskij, B. S. Ong, and D.N. Harpp, J. Org. Chem., 43, 1526 (1978).
- 3) G. Zweifel and W. Lewis, J. Org. Chem., 43, 2739 (1978); H. Westmijze, J. Meijer, and P. Vermeer, Tetrahedron Lett., 1977, 1823.
- 4) R. F. Cunico and Y. K. Han, J. Organomet. Chem., 105, C29 (1978).
- 5) Alternatively **2e** can be prepared from 3,3-dichloroallyltriphenyllead in two steps: D. Seyferth and R. E. Mammarella, *J. Organomet. Chem.*, **156**, 279 (1978).
- 6) Enol silylation of halo ketones **7a** and **7b** exclusively gave the *Z*-isomer when the reaction was carried out in ether using triethylamine as base, whereas LDA favored the *E*-isomer.